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A Wearable Thumb Device for Fruit Firmness Estimation with Vision-Based Tactile Sensing2
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• A novel wearable device for non-destructive, and real-time fruit firmness estimation is proposed.4

• A deep learning model is proposed and deployed on the device with a R2 of 0.89%.5

• A ”Hayward” Kiwi dataset with 530 pairs of tactile palpation and penetrometer firmness readings6

was collected to validate the device.7

• The device was validated for real-time firmness, demonstrating its practicality in agriculture.8
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Abstract16

Recent advancements in non-destructive technologies have enabled precise firmness measurement for var-
ious fruits, including kiwifruit. However, existing methods remain limited by high costs, environmental
sensitivity, and field application impracticality. This work introduces a novel wearable device for estimat-
ing non-destructive fruit firmness, combining human tactile interaction with vision-based tactile sensing and
edge computing. Worn on the thumb, the device leverages embodied intelligence, merging intuitive human
touch with the precision of a vision-based tactile sensor. A single-board computer processes tactile images
locally, enabling reliable operation even in remote environments. The device employs our proposed deep
learning model for real-time firmness predictions from a single palpation, minimizing repetitive handling
and reducing fruit bruising. Its ergonomic, symmetrical design supports comfortable use on either hand,
enhancing usability. Compact and portable, the device integrates essential components within a housing
measuring 40 mm × 25 mm × 72 mm and weighing only 135 g. Validated through non-destructive ripeness
assessments on ’Hayward’ Kiwifruit, the device demonstrated a strong correlation between tactile images
and firmness values when paired with our proposed model, achieving a coefficient of determination (R2) of
0.89. This study created a dedicated dataset on Kiwi firmness to support model development and validation.
Moreover, this work’s proposed dataset and source code will be released publicly upon paper acceptance.
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1. Introduction18

Each year, approximately one billion tons of food are wasted globally, intensifying food insecurity19

and underscoring the urgent need for sustainable practices in the food industry (Voss et al. 2024). Fruit20

production is particularly critical, as rising consumer demand for high-quality produce increases pressure21

to minimize losses. Efficient quality assessment plays a key role in addressing this challenge.22

Ripeness is a fundamental measure of fruit quality, directly influencing taste, and marketability. Accu-23

rate ripeness evaluation ensures fruits are harvested at their optimal maturity, enhancing flavor, nutritional24
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Figure 1: The proposed wearable device for real-time, and non-destructive fruit firmness estimation. The user palpates a Kiwi, and
the proposed model processes the VBTS palpation recording to predict firmness in a non-destructive approach. The right segment
illustrates the concept of embodied human-device intelligence, highlighting how haptic feedback and human interaction regulate
force during palpation.

value, and storage potential. It also reduces waste during distribution and increases consumer satisfaction,25

providing a competitive edge for producers (Mazhar et al. 2016)(Khalifa, Mohammad Hassan Komarizadeh,26

and Tousi 2011).27

For fruits such as mangoes, bananas, and apples, ripeness is often determined by visible skin color28

changes, with computer vision (CV)-based solutions providing non-invasive and effective assessments (Va-29

liente, Parco, and Sangalang 2021). In contrast, fruits such as Kiwis, which show little to no color change30

during ripening, rely on firmness as a more reliable indicator of maturity and readiness for consumption.31

This is especially crucial for Kiwifruit, valued for its high nutritional content and economic significance.32

An accurate assessment of firmness is essential to maintain quality, preserve market appeal, and minimize33

waste (Nazir et al. 2024; Khan et al. 2023). Moreover, Kiwifruit’s susceptibility to bruising during handling34

highlights the importance of gentle and precise evaluation methods to ensure quality. (Ahmadi 2018; F. R.35

Harker and Hallett 1994).36

Although various non-destructive tools have been explored, many are constrained by operator depen-37

dence, environmental sensitivity, and limited adaptability across different fruit types (J. Abbott et al. 1995;38

Anjali et al. 2024). Vision-based tactile sensing (VBTS) has recently emerged as a promising alternative,39

capturing high-resolution deformation data through soft elastomeric interfaces. When coupled with deep40

learning, these systems offer improved accuracy and robustness for firmness estimation under variable con-41

ditions (Ma, Ying, and Xie 2024; J. Lin et al. 2023; Yuan, Srinivasan, and Adelson 2016; Yuan, Zhu, et al.42

2017; Mohsan et al. 2025). Building on the strengths of VBTS while addressing the limitations of existing43

tools, we present a novel wearable device specifically designed for fruits like kiwifruit, where firmness is44

a key ripeness indicator. The device, worn on the thumb, naturally follows the motion of human touch to45

apply controlled, gentle pressure to the fruit’s surface (Figure 1). An integrated RGB camera records defor-46

mation in the elastomer, and deep learning algorithms process these patterns to predict firmness with high47

precision. To the best of our knowledge, this is the first system to integrate VBTS principles with human48

tactile dynamics in a wearable form, enabling non-destructive, intuitive, and accurate firmness assessment.49

A key advantage of the device is its efficiency, as it determines Kiwifruit ripeness in a single palpation50
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motion— unlike humans, who often require multiple attempts, increasing the risk of bruising (Rivera et al.51

2023; Barrett, E. Garcia, and and 1998). The design leverages natural haptic feedback from the supporting52

fingers, enabling real-time pressure adjustments. In comparison to robotic systems, which often prioritize53

precision but lack adaptability (Mohsan et al. 2025), the wearable device integrates advanced sensors with54

the human ability to intuitively adjust force. This hybrid approach ensures accurate, efficient, and gentle55

handling of delicate fruits like Kiwifruit. By merging automation with human intuition, the device provides56

a sustainable and reliable solution for enhancing firmness evaluation while minimizing damage, ultimately57

improving fruit quality.58

This paper has the following key contributions:59

1. A novel wearable thumb device for non-destructive fruit firmness estimation, integrating a vision-60

based tactile sensor (VBTS) to capture localized surface deformations during palpation. This AI-61

driven approach, which combines human intelligence with VBTS analysis, is, to the best of our62

knowledge, the first of its kind.63

2. A deep learning model is proposed and deployed on a compact single-board computer, enabling local64

video-based inference to estimate firmness by extracting spatial and temporal features from tactile65

palpation.66

3. A ”Hayward” Kiwifruit dataset was collected, comprising tactile palpation recordings and penetrometer-67

based firmness measurements to develop and validate the proposed device. This dataset and the source68

code of the proposed model will be publicly available upon acceptance.69

4. The proposed wearable device was validated for firmness assessment through field experiments,70

demonstrating its practicality for non-destructive, real-time firmness evaluation in agriculture.71

2. Related Work72

2.1. Traditional Methods of Fruit Firmness Estimation73

Mechanical devices for evaluating fruit firmness typically utilize compression, puncture, and impact74

tests (H. Li et al. 2016). Among invasive methods, the Magness-Taylor (MT) penetrometer remains a widely75

adopted tool for measuring rupture force by inserting a probe into the fruit (Judith A Abbott 1999). However,76

the reliance on operator skill in using these devices introduces variability in results (F. Harker, Maindonald,77

and Jackson 1996). To address this challenge, advancements such as force gauges mounted on controlled78

stands have been developed to enhance precision (Jantra et al. 2018). Despite these improvements, the79

inherently invasive nature of these devices poses a significant limitation, as the tested samples are unusable80

afterwards.81

In contrast, non-invasive mechanical devices, like durometers, assess parameters such as resistance or82

bioyield force with minimal damage to the fruit. However, their accuracy depends on user technique, and83

they often require reconfiguration for different fruit varieties, reducing their versatility (F. Harker, Maindon-84

ald, and Jackson 1996). Beyond mechanical approaches, acoustic and vibrational methods have emerged as85

promising non-invasive alternatives for assessing firmness. Acoustic devices operate by generating sound86

waves through impact excitation and analyzing the resulting signals to determine fruit firmness (Khalifa,87

Mohmmad Hasan Komarizadeh, and Tousi 2011). Vibrational methods, on the other hand, involve generat-88

ing vibrations and detecting the response, which is influenced by the resonance frequency of the fruit and89

correlates closely with its firmness. While promising, these methods remain susceptible to environmental90
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factors such as temperature, humidity, and background noise, affecting their reliability in field conditions91

(J. Abbott et al. 1995).92

Additionally, optical methods provide advanced non-invasive techniques for firmness evaluation, utiliz-93

ing visible and near-infrared (NIR) spectra to measure various quality attributes. Reflectance-based optical94

devices capture diffusing reflectance spectra to construct predictive models for firmness-related parameters,95

as demonstrated by handheld NIR analyzers and portable Vis/NIR spectrometers (Cirilli et al. 2016; Huang,96

Lu, and K. Chen 2018). Transmittance-based optical devices complement these approaches by measuring97

light that passes through the fruit, offering valuable insights into internal quality attributes. However, these98

systems can be costly and sensitive to variations in fruit surface properties such as color, texture, and shape.99

Additionally, environmental factors like dust, moisture, and surface damage can introduce inconsistencies,100

necessitating careful calibration (Anjali et al. 2024).101

2.1.1. Wearable Devices for Fruit Firmness Estimation102

Advancements in wearable technology have revolutionized non-destructive testing methods, enhancing103

the efficiency and precision of fruit firmness estimation during harvesting and quality assessment. K. Peleg104

et al. pioneered a method utilizing vibration and acceleration transducers to evaluate the firmness of fruits105

and vegetables without causing damage (Peleg 1997). Expanding on this foundation, Q. Lin et al. devel-106

oped a wearable glove device capable of detecting and classifying agricultural products by measuring their107

curvature, color, and weight (C.-D. Lin et al. 2018). Similarly, C. Pinto et al. introduced an intelligent glove108

equipped with sensors for pressure, color, and flexion, enabling real-time analysis of produce maturity and109

quality (Pinto et al. 2014).110

Current wearable firmness estimation devices rely on low-resolution sensors, restricting their capability111

to capture detailed palpation and texture variations. Research on vision-based tactile sensing in wearable112

devices, which provides higher resolution and enhanced sensitivity, remains unexplored, despite its potential113

for more precise firmness assessment.114

2.1.2. Visuo-Tactile-based Devices for Fruit Firmness Estimation115

Visuo-tactile devices have emerged as innovative tools for evaluating fruit firmness, a crucial factor in116

agricultural quality control. These devices facilitate non-destructive firmness measurements by seamlessly117

integrating advanced visual and tactile sensing technologies, significantly enhancing harvesting and storage118

practices. For instance, a visuo-tactile sensor designed to detect image variations during touch demonstrated119

remarkable efficacy, achieving an R2 of 0.88 and an RMSE of 0.719 in assessing peach firmness (Ma, Ying,120

and Xie 2024). Similarly, a device employing a soft gripper inspired by the fin-ray effect combined tactile121

sensing with visual data processing, achieving R2 values of 0.795 for tomatoes and 0.753 for nectarines122

(J. Lin et al. 2023). Another approach utilizes tactile predictive recognition for evaluating fruit hardness,123

delivering superior accuracy compared to conventional methods (S. Li et al. 2023).124

Existing non-destructive fruit firmness estimation devices face several limitations. Mechanical devices125

like durometers depend on operator skill and are often fruit-specific, requiring additional assembly for dif-126

ferent varieties (F. Harker, Maindonald, and Jackson 1996). Acoustic and vibrational methods are affected127

by environmental factors such as temperature, humidity, and noise, compromising accuracy (J. Abbott et128

al. 1995). Optical devices, while advanced, are costly and inconsistent due to variations in fruit surface129

properties and environmental conditions like dust, moisture, and surface damage (Anjali et al. 2024). To130

overcome these challenges, we propose a novel wearable device that utilizes a vision-based tactile sensor for131

estimating fruit firmness. This device, designed for quality inspectors and farmers, is the first nondestructive132

approach to leverage off-the-shelf VBTS for mimicking human palpation. Worn on the thumb, it applies133

human-level pressure to the fruit surface, causing deformation in an elastomer. The RGB camera captures134
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Figure 2: Development of proposed device (Left) The prototype of proposed device. (Center) A CAD exploded view of our
device, illustrating its two main modules: the thumb module with a VBTS at the tip of the thumb and the wrist module containing
the main control unit and user interaction interface in the 3D-printed housing. Adjustable elastic straps are used in both modules
for secure and comfortable use. (Right) Hardware setup and connections: The Radxa Zero 2 Pro is connected with one button, an
OLED display, a DIGIT (VBTS) sensor, and an external power bank of 15W is used.

this deformation, and a deep learning model processes the data to predict firmness, enabling accurate and135

efficient ripeness grading.136

3. Materials and Methods137

The proposed wearable device, illustrated in Figure 1, was designed for the non-destructive, and real-138

time firmness assessment of ’Hayward’ kiwifruit. This section describes the device’s working principle139

and design, including integrating embedded systems for real-time processing. It also describes the plant140

material used, highlighting the creation of a dedicated dataset comprising tactile palpation recordings paired141

with penetrometer-based firmness measurements for model development. Furthermore, it also describes the142

proposed model and the implementation details that enabled accurate firmness estimation.143

3.1. Embodied Human-Device Intelligence144

Embodied intelligence (Zhao et al. 2024), in the context of this paper, represents the seamless integra-145

tion of human tactile abilities with advanced technological tools to achieve reliable and accurate firmness146

assessments. Haptic feedback, combining tactile and proprioceptive sensors, is fundamental to human147

touch. Tactile receptors detect changes in pressure, deformation, and contact area, while proprioceptive148

sensors in muscles and joints monitor finger movement and position. Together, these sensory inputs create a149

feedback loop that allows humans to adapt force precisely to material compliance without causing damage150

(Xu et al. 2020; Condon et al. 2014).151

Despite this sophistication, human tactile assessments are inherently variable and often inconsistent.152

Repeated palpation, commonly used to verify firmness, can be destructive, particularly for delicate objects153

like fruits. Furthermore, humans may forget or misinterpret past tactile experiences, leading to unreliable154

evaluations. To overcome these challenges, our wearable device augments human capabilities, combining155

the adaptability of human touch with the precision and consistency of the device. The processing unit156

processes tactile information captured by the vision-based tactile sensor with reliability, ensuring accurate157

firmness assessments.158
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This synergy between human and device embodies intelligence by leveraging the operator’s tactile in-159

stincts while standardizing and enhancing the assessment process. The device captures and processes tactile160

information in real time, providing an objective assessment with a single palpation, unlike humans, who of-161

ten rely on repeated comparisons to discern relative firmness.162

3.2. Device Design163

The proposed device comprises two primary modules: a thumb module and a wrist module. The thumb164

module, worn on the user’s thumb, incorporates a vision-based tactile sensor (DIGIT) at its tip (Lambeta165

et al. 2020), enabling high-resolution sensing of contact deformations during human palpation. The DIGIT166

sensor captures rich, real-time tactile data by observing the deformation of a soft elastomer surface through167

an internal camera, allowing for accurate recording of subtle textures, pressures, and natural interactions168

with the fruit. The wrist module contains the main control unit, a display, and a single user-friendly button169

for straightforward interaction. The device was designed symmetrically to accommodate different user170

preferences, allowing comfortable use on either hand. Figure 2 illustrates the Computer-Aided Design171

(CAD) of our device.172

To validate its design and functionality, a prototype was developed (Figure 2). Both the wrist and thumb173

holders were 3D printed using black polylactic acid (PLA) filament. For additional comfort, the base of174

the wrist module was manufactured with a flexible NinjaFlex thermoplastic polyurethane (TPU). This was175

done to ensure a comfort fit on user’s wrist. An adjustable soft strap was then attached to the base of wrist176

module and thumb module allowing the device to fit users of different sizes, making the thumb wearable177

both adaptable and secure during operation.178

3.3. Embedded System179

Local data processing is essential for our device to operate in remote locations where network con-180

nectivity is unreliable. To achieve this, the device was designed as a complete stand-alone unit for on-site181

inference. This approach ensures continuous operation and low latency.182

At the core of the proposed system is the Radxa Zero 2 Pro single-board computer (SBC). This SBC183

is equipped with a quad-core ARM Cortex-A53 processor, a Mali-G31 MP2 GPU, up to 4GB of LPDDR4184

RAM, and eMMC storage, providing edge computational power for real-time tactile data processing. For185

user interaction, an OLED display was integrated into the system to provide visual feedback, and a button186

was included to initiate operations. The DIGIT VBTS (Lambeta et al. 2020), attached on the thumb module,187

captures high-resolution tactile palpation information, which are then processed locally on the SBC. Power188

is supplied through an external power source. All peripherals, including the display, buttons, VBTS, and189

power bank, are connected to the SBC via its General-Purpose Input/Output (GPIO) interface, establishing190

a centralized control system. Figure 2 illustrates the hardware connections.191

The operation workflow begins when the user presses the button, triggering the palpation process. The192

DIGIT sensor captures tactile images in the form of video, which are then processed by our proposed deep193

learning model deployed on the SBC. The model analyzes the palpation video in real time to predict the194

firmness of the object under examination. The firmness value is displayed on the OLED screen.195

3.4. Plants Materials196

This section describes how the dataset was gathered, including selection of fruit, acquisition protocols,197

and labeling methods, all crucial for training and validating the model.198

The Hayward Kiwifruit variety was selected for this study due to its widespread cultivation and its199

reputation for superior quality and appealing flavor (C. V. Garcia et al. 2012). This variety is known for200
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Figure 3: Illustration of the dataset collection: The proposed device is used to record palpation data from each fruit. On the top
right, two representative samples are shown—one soft (0.5 kg/cm²) and one firm (3.15 kg/cm²). Although both appear visually
similar, their VBTS palpation signatures differ significantly, reflecting variations in firmness. At the bottom center, the blue points
mark where each sample is palpated, and the red point indicates where the penetrometer reading is taken. Each Kiwi is then cut for
penetrometer based ground truth measurements (Bottom right).
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its gradual decline in firmness during ripening, driven by physiological changes. Initially firm at harvest,201

the fruit softens over time as cell adhesion weakens during cold storage. This softening accelerates in the202

later stages of ripening due to increased cell separation and greater plasticity of cell walls. These changes203

make accurate firmness assessment essential for maintaining fruit quality during post-harvest handling and204

storage (F. R. Harker and Hallett 1994).205

A total of 106 fruit samples were randomly selected for this study. Each fruit was palpated using the206

device at five distinct points (P1–P5) to capture localized variations in firmness. Ground truth firmness207

was measured using a QA Supplies penetrometer (Supplies n.d.). According to the standard protocol,208

approximately 1 mm of the fruit peel was removed to expose a flat flesh surface, and the probe was inserted209

perpendicularly into the fruit flesh to a depth of 7.9 mm (5/16 inch) over the course of a few seconds210

(Magness and Taylor 1925; H. Li et al. 2016). Readings were considered invalid if the probe was inserted211

beyond or fell short of this marked depth. The penetrometer measured firmness in units of kg/cm2.212

Firmness values (G1 and G2) for each fruit were measured at only two equatorial points, either P1–P2 or213

P3–P4, and the average of the two values was used as the ground truth. The P5 point, located near the stem,214

was not used for penetration-based firmness measurement, as creating a flat surface in this curved region215

would require the removal of fruit flesh, thereby violating the standard protocol. However, we intentionally216

included P5 in our sampling protocol for recording palpation only to ensure the dataset reflects real-world217

variability and improves the generalizability of our device across different fruit regions. Figure 3 illustrates218

the dataset collection process and how the VBTS signatures differ between soft and hard samples.219

This procedure yielded 530 unique pairs of VBTS palpation recordings and corresponding ground truth220

measurements. For each palpation recording, frames were selected from the start of contact until the end221

of contact. The number of frames per recording ranged from 32 to 96, with a mean of 44.32 (median 43).222

Ground truth firmness values ranged from 0.5 to 3.3 kg/cm2, with a mean of 1.4945 kg/cm2 (median 1.45223

kg/cm2). While most samples clustered around the mean, a few outliers extended the range, especially very224

hard fruits. Finally, the dataset was split in an 80:20 ratio for training and testing, ensuring that the model225

is evaluated across the complete firmness spectrum—including atypical values.226

3.5. Network Architecture and Implementation Details227

This study proposes a CNN-LSTM architecture for predicting fruit firmness from video sequences (Fig-228

ure 4). The model input consists of 16-frame sequences uniformly sampled from each video, ensuring229

consistent temporal coverage. Spatial features are extracted from individual frames using a pre-trained230

MobileNet v2 (Howard et al. 2017), which processes the spatial information within each frame. These ex-231

tracted features are then passed to a single-layer LSTM with 128 hidden units, enabling the model to capture232

temporal dependencies across the sampled frames. This approach allows the CNN-LSTM architecture to233

effectively analyze palpation videos and estimate fruit firmness with high precision.234

To ensure uniform temporal representation of the video data, frames were sampled at equal intervals.235

The sampling process divided the total number of frames, N, into consistent intervals corresponding to the236

desired number of sampled frames, nsample. The step size is determined using the formula:237

step = max
(
1,

N − 1
nsample − 1

)
The Huberloss (Huber 1992) loss function optimizes the model’s performance during training. It is238

defined as:239

L(y, ŷ) =

0.5 · (y − ŷ)2 if |y − ŷ| ≤ δ,
δ · |y − ŷ| − 0.5 · δ2 otherwise.
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Figure 4: Proposed architecture: VBTS palpation recordings, captured over n frames, are processed by a CNN-based video
encoder to extract spatial features. A linear layer transforms these features at each time step into 1D spatial representations,
subsequently fed into an LSTM network to model temporal dependencies. The final output is passed through a fully connected
(FC) layer, generating the firmness prediction of the Kiwi.
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Here, y represents ground truth, ŷ represents predicted firmness, and δ represents the threshold at which the240

loss transitions from quadratic to linear, enhancing its robustness to outliers.241

The training process employed the RMSprop optimizer and a CosineAnnealingLR scheduler to optimize242

the network’s performance. Early stopping was applied after five epochs of no improvement to prevent243

overfitting. Pre-trained weights were fine-tuned over 1000 epochs with a learning rate and weight decay244

of 0.00005. Data augmentation techniques were employed to improve generalization, including random245

horizontal flipping, color jittering, and normalization.246

The proposed model was implemented with Pytorch using the HuggingFace library on a machine with247

NVIDIA RTX 4090 GPU, CUDA Toolkit v11.0.221, and cuDNN v7.5. The effectiveness of the proposed248

model in estimating firmness is comprehensively assessed and benchmarked against state-of-the-art (SOTA)249

methods using evaluation metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), Root250

Mean Squared Error (RMSE), and Coefficient of Determination (R2).251

4. Experimentation on CNN-LSTM model252

Table 1: Experimenting with the proposed model’s various components and parameters as discussed in Section 4. In Exp# 1, the
Sample Duration was experimented with for better temporal context. Exp# 2 explores the impact of Loss Functions for better
accuracy, and lastly, in Exp# 3, the effect of optimizer was explored for convergence.

Sr Model
Sample

Duration
Loss

function Optimizer R2 ↑

1 Baseline 8 SmoothL1 AdamW 0.70
2

Exp# 1
4 SmoothL1 AdamW 0.43

3 16 SmoothL1 AdamW 0.79
4

Exp# 2
16 MSEloss AdamW 0.76

5 16 Huberloss AdamW 0.85
6

Exp# 3
16 Huberloss SGD -

7 16 Huberloss RMSprop 0.89

The ablation study explores the impact of various configurations on the model’s performance. The base-253

line configuration, utilizing a sample duration of 8 with the SmoothL1 loss function and AdamW optimizer,254

achieved an R2 score of 0.70, serving as a reference point for further variations. Table 1 summarizes the255

experimentation.256

Effect of Sample duration: Experiments were conducted to analyze the impact of varying sample257

duration on model performance while keeping the loss function (SmoothL1), optimizer (AdamW), and258

other hyperparameters constant. Results proved that decreasing the sample duration from 8 (baseline) to 4259

reduced the R2 value from 0.70 to 0.43. However, increasing the sample duration to 16 improved the R2
260

value to 0.79. This indicates that a longer sample duration provides a better temporal context, improving261

model performance.262

Impact of loss functions: The CNN-LSTM architecture was ablated incrementally. This section ana-263

lyzes the model performance by changing loss functions. The baseline SmoothL1 loss was replaced with264

MSELoss and HuberLoss, while other training parameters were kept consistent, isolating the impact of the265

loss function. The performance decreased by 3.8%, with MSELoss resulting in a R2 score of 0.76. For Hu-266

berLoss, the performance increased with a R2 score of 0.85, showing a significant improvement of 7.59%.267

This suggests that HuberLoss effectively handles deviation compared to SmoothL1 and MSELoss. While268

MSELoss heavily penalizes large errors due to its quadratic nature, HuberLoss applys a linear penalty to269

large residuals, thus reducing the influence of outliers more effectively. Unlike SmoothL1, which has a fixed270

transition.271
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Figure 5: Correlation between the prototype readings and reference firmness values with a Coefficient of Determination (R2) score
of 0.89.

Effect of optimizers for better convergence: The impact of using different optimizers was explored272

while keeping the sample duration fixed at 16 and using HuberLoss. Although the model did not converge273

with the SGD optimizer, using RMSprop resulted in the highest R2 score of 0.89. RMSProp adapts the274

learning rate for each parameter dynamically based on recent gradients. It maintains a moving average275

of the squared gradients, which helps stabilize updates and prevents large oscillations in the optimization276

process. This is particularly beneficial for datasets that contain outliers of varying scales, allowing them to277

converge more effectively.278

Overall, the ablated model achieved a R2 increased of 0.19 increment over the baseline. This improve-279

ment is attributed to the combination of high temporal information, Huberloss loss function for handling280

outliers, and RMSProp to maintain stability during training. It enhanced the model’s capability to predict281

firmness from Palpation (video).282

5. Results and Discussion283

This section discusses the quantitative and qualitative results. Lastly, the comparison of our proposed284

model with SOTA architecture and the comparison of our proposed device all available commercials is also285

discussed.286

5.1. Regression Analysis287

In the evaluation of our video regression model, we conducted a comprehensive residual analysis to288

assess the discrepancies between the model predictions and the observed ground truth values. The scatter289

plot, Figure 6, of residuals versus ground truth demonstrates a generally random distribution of residuals290

across different ground truth values, suggesting that our model does not exhibit systematic bias across the291

range of outputs. This is further corroborated by the histogram of residuals, which shows a distribution cen-292

tered around zero with most residuals tightly clustered within a narrow range, albeit with slight skewness.293

This distribution suggests that, while our model is generally accurate and unbiased, there remains some294

variability in prediction accuracy.295
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Figure 6: Residual Analysis of our model (Left) Scatter plot of residuals demonstrates random distribution suggesting unbiased
model estimation.(Right) The Histogram of Residuals shows residuals centered around zero, indicating general estimation accuracy
with slight variability.

Figure 5 illustrates the correlation between the firmness readings of the proposed model and the ground296

truth. The red dashed line represents the ideal 1:1 correlation, and the blue data points indicate the predic-297

tions, which closely follow the trend of the perfect fit line, demonstrating a strong positive correlation. A298

R2 score of 0.89 was achieved.299

5.2. Palpation Explainability and Interpretability Analysis300

To assess our model’s ability to capture human palpation motions from DIGIT video sequences, we uti-301

lized Grad-CAM (Selvaraju et al. 2017) using the TorchCAM library (Fernandez 2020). Figure 7 showcases302

samples with varying firmness levels and corresponding spatial attention patterns. In each frame, the left303

image represents the input from the DIGIT sensor, while the right picture shows the overlay of the model’s304

attention using Grad-CAM. This visualization technique highlights image regions most influential to the305

model’s predictions. This allowed us to confirm whether the model aligns its focus with the DIGIT sensor306

motion during palpation.307

For the first sample, the ground truth firmness was 2.75, and the model predicted 2.71, resulting in a308

residual of 0.03. In the second sample, the residual was only 0.02. Both samples exhibit strong spatial309

alignment between the model’s attention and the palpation regions, indicating that the model effectively310

captures relevant palpation deformation for accurate firmness prediction. Conversely, in the third sample,311

the residual was 0.29. As shown in Figure 7, the model’s attention is less aligned with the palpation region in312

this sample, contributing to a higher residual error. Overall, the consistent attention patterns in well-aligned313

cases highlight the model’s generalization capability and reliability in analyzing palpation dynamics, while314

misalignments suggest areas for further improvement in handling diverse firmness conditions.315

Lastly, we analyse the impact of duration of palpation on prediction of firmness. Figure 8 displays316

the relationship between the number of frames in a video and the prediction residuals of our regression317

model. The red line, which represents a smoothed trend of the residuals, exhibits a slight peak around318
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Figure 7: Grad-CAM Visualizations of our proposed model: Each row represents a unique sample with corresponding ground-
truth (GT) and predicted (Pred) firmness values, along with the residuals (∆). The left image in each frame shows the input VBTS
image, while the right image displays the model’s attention overlay using Grad-CAM. The Grad-CAM visualizations highlight the
spatial alignment between the model’s attention and the palpation region on VBTS images. In Samples 1 and 2, strong alignment
correlates with accurate estimation and low residuals. Conversely, Sample 3 shows poor alignment, resulting in higher residual
error. The frames displayed correspond to the sequence’s 2nd, 5th, 9th, 11th, and 14th positions.

Figure 8: Residual plot of proposed model firmness estimation vs. Number of Frames - Shows minimal discrepancies at around 50
frames, stabilizing in longer videos. Indicates minimal impact of frame count on model accuracy.
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Figure 9: Comparison of the proposed wearable device and traditional fruit firmness testers. The proposed device integrates
human dexterity with AI-driven tactile sensing, enabling non-destructive, real-time firmness estimation. In contrast, conventional
methods—including mechanical (rupture and durometer), optical, and vibrational techniques are often invasive or influenced by
environmental factors, limiting their adaptability and accuracy.

50 frames, indicating minor discrepancies in predictions in this range. However, as the number of frames319

increases beyond this point, the residuals trend towards zero, suggesting that the model predictions become320

more accurate or consistent with the actual values. This pattern implies that the model may handle longer321

sequences slightly better, possibly due to more comprehensive data within these videos. Nevertheless,322

the overall trend is relatively flat, confirming that the number of frames does not significantly affect the323

prediction residuals, indicating minimal influence on model performance across different video lengths. It’s324

important to note that while the FPS of the DIGIT sensor was set to 30, we cannot confirm if this was325

maintained in real time since the actual duration of palpation was not recorded. As explained in Section326

3.4, our dataset only contains frames of palpation, and the number of frames serves as an indicator of the327

duration of palpation.328

This analysis confirms that the model focuses on relevant spatial and temporal features related to human329

palpation motions, supporting its ability to predict fruit firmness accurately.330

Table 2: Evaluation of the proposed model versus SOTA architectures on MSE, RMSE, R2, and MAE metrics

Sr Model MAE ↓ RMSE ↓ R2 ↑

1 TimesFormer (Bertasius, Wang, and Torresani 2021) 0.17 0.21 0.87
2 VideoMAE (Tong et al. 2022) 0.22 0.28 0.78
3 Ours Baseline 0.24 0.33 0.70
4 Ours Improved 0.15 0.20 0.89

5.3. Comparative Analysis331

The performance of the proposed CNN-LSTM model was evaluated through a comparative analysis332

with transformer based architectures, specifically TimesFormer (Bertasius, Wang, and Torresani 2021) and333

VideoMAE (Tong et al. 2022), which represent the state-of-the-art in video-based tasks. To ensure a rigor-334

ous and equitable comparison, these transformer models were fine-tuned on the dataset used in this study,335
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Table 3: Qualitative comparison of portable commercial devices used for fruit firmness detection.

Sr Mechanism Name

Non-Destructive
Com

pact
W

earable
O

n-tree
AI-Based
W

ireless
Accuracy
O

peration

Cost

W
eight (g)

Size (m
m

)

1 FT-series (QA Supplies 2024) ✗ ✓ ✗ ✗ ✗ ✓ α ω $$$$$ 500 112*59*24
2 Mechanincal GY series (Handpi 2024) ✗ ✓ ✗ ✗ ✗ ✓ α ω $$$$$ 500 140*60*30
3 (Rupture Force) FHT series (Landtek 2024) ✗ ✓ ✗ ✗ ✗ ✓ α ω $$$$$ 200 204*62*33
4 HPEII-Fff (Bareiss 2024) ✓ ✓ ✗ ✓ ✗ ✓ α ω $$$$$ 300 190*70*40
5 Mechanincal Fruit Firm Meter (Turoni 2024) ✓ ✓ ✗ ✓ ✗ ✓ α ω $$$$$ - -
6 (Deformation)

Firmness Tester (Aweta 2024) ✓ ✓ ✗ ✓ ✗ ✓ α ω $$$$$ 210-
400

65*60*27
130*72*33

7 Acoustic/
Vibrational

Aweta AFS (Aweta 2024) ✓ ✗ ✗ ✗ ✗ ✗ ϕ β - - -
8 MR-series (MR-Series 2024) ✓ ✓ ✓ ✓ ✗ ✓ γ - $$$$$ 76 Wearable

10
Optical

F-750 (Felix 2024) ✓ ✗ ✗ ✓ ✗ ✓ ϕ ϕ $$$$$ 1050 180*120*45
11 NIR Case (Sacmi 2024) ✓ ✗ ✗ ✗ ✗ ✗ ϕ ω - NA 400*300*200
12 DA-meter (T. T. Store 2024) ✓ ✓ ✗ ✓ ✗ ✓ ϕ ϕ - 320 165*80*50

13 Vision-based
tactile sensing Ours ✓ ✓ ✓ ✓ ✓ ✓ ϕ ϕ $$$$$ 135 Wearable

Notes: In the ’Accuracy Limitations’ column, symbols represent specific conditions: ’α’ indicates that additional apparatus is necessary to
enhance accuracy, ’γ’ suggests that the accuracy of the measurement is affected by contact, and ’ϕ’ signifies none of the aforementioned conditions
apply. In the ’Operation Limitations’ column, ’ω’ denotes that additional assembly of components is required for handling different fruits, ’β’
implies additional measurements related to the shape and weight of the fruit are necessary, and ’ϕ’ indicates none of the mentioned limitations
are applicable. In the ’Cost’ column, prices are indicated as follows: $ = under $1,000; $$ = $1,000-$1,999; $$$ = $2,000-$2,999; $$$$ =
$3,000-$4,999; $$$$$ = over $5,000.

utilizing their pre-trained baseline weights to leverage the benefits of extensive prior training on large-scale336

datasets.337

Our proposed model outperformed both transformers in terms of accuracy and error metrics. Specifi-338

cally, our improved model achieved the lowest MAE of 0.15, RMSE of 0.20, and the highest R2 value of339

0.89. In contrast, TimesFormer achieved an MAE of 0.17 and RMSE of 0.21, with an R2 of 0.87, while340

VideoMAE reported an MAE of 0.22, RMSE of 0.28, and R2 of 0.78. These results indicate that our model341

provides a more precise and reliable prediction. Table 2 compares our proposed model with SOTA models.342

5.4. Comparison with Commercial Devices343

The proposed thumb-mounted device for the estimation of fruit firmness is compared to existing portable344

commercial devices in Table 3. These devices, widely used in the agricultural industry, serve as bench-345

marks for practical applications (see Figure 9). Key attributes considered in the comparison include non-346

destructiveness, compactness, wearability, on-tree measurement capability, AI integration, wireless func-347

tionality, ease of operation, and cost-effectiveness. Non-destructiveness preserves fruit quality, compact-348

ness, and wearability, enhancing usability, and on-tree measurement capability allows immediate field data349

collection. AI integration improves accuracy, wireless functionality simplifies data management, ease of350

operation ensures accessibility for diverse users, and cost-effectiveness broadens adoption.351

Table 3 details the evaluation of these attributes and reveals notable limitations in existing devices.352

Mechanical penetrometers (e.g., FT-series, GY series, FHT series) are compact, wireless, and low-cost but353

destructive, non-wearable, and lack on-tree measurement capability. Mechanical durometers (e.g., HPEII-354

Fff, Fruit Firm Meter, Firmness Tester) are compact, wireless, and support on-tree measurements but are not355

wearable and require additional apparatus for accuracy. Acoustic/vibrational devices vary: the Aweta AFS356
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Figure 10: On-tree demonstration of the wearable device for real-time kiwifruit firmness assessment. This figure shows the device
in a field setting, estimating firmness directly on the tree using palpation-based sensing. The battery-powered, wrist-worn design
supports portable, non-destructive use. The setup demonstrates on-tree feasibility.

is non-destructive but bulky, non-wearable, and requires additional shape and weight measurements, while357

the MR-series is compact, wearable, and wireless but has accuracy limitations and is high-cost. Optical358

devices (e.g., F-750, NIR Case, DA-meter) are non-destructive, with the DA-meter being compact and359

wireless, while others are larger and may require assembly for different fruits.360

In contrast, our device stands out by incorporating all key attributes—it is non-destructive, compact,361

wearable, supports on-tree measurements, and is wireless. It has no noted accuracy or operational limita-362

tions and employs a palpation-based method, making it unique among the compared devices. In addition,363

the cost is low.364

Lastly, the global fruit firmness tester market was valued at 72.3 million USD in 2023 and is projected365

to reach 110.2 million USD by 2032 (More 2024). This growth underscores the increasing demand for366

non-destructive firmness testers, highlighting the market potential and relevance of the proposed device as367

an innovative and practical solution for the agriculture industry.368

6. Real World Demonstration369

To evaluate the device’s practical utility in agriculture, we conducted on-tree firmness assessments of370

kiwifruit without detaching or damaging them—highlighting the non-destructive nature of our approach and371

its relevance for precision harvest decisions. As shown in Figure 10, three kiwifruits were suspended from372

a tree for testing. The operator donned the wrist and thumb modules, completing setup in 30± 11 seconds.373

Firmness estimation involved gently grasping a fruit, initiating the process via a button press, and receiving374

real-time prompts and haptic feedback. The SBC verified sensor status, captured tactile data, ran the deep375

learning model, and displayed the predicted firmness within 18.25± 0.16 seconds. Including a 5-second376

display period, the full interaction loop lasted 23.98± 0.31 seconds. Model inference time was 3.82±377

0.27 seconds, with a computational complexity of 5.01 GFLOPs for 16 frames (0.3128 GFLOPs/frame),378

measured using the FVCORE library (Research 2019).379

The operator applied minimal force (2–10 N) with brief short palpation durations to minimize bruising.380

No wrist or thumb strain was reported, and the fruits showed no visible damage, validating the device’s381
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comfort and safety for on-tree use.382

7. Limitations and Future Work383

While the results are promising, this study is currently limited to only ”Hayward” kiwifruit. Future work384

will aim to broaden the dataset by including a wider variety of fruits and vegetables in terms of size, shape,385

and weight, such as cucumbers, tomatoes, blueberries, and strawberries, and will involve multiple users386

to enhance device generalizability. Although the device is designed and demonstrated for non-destructive387

on-tree firmness estimation (see Section 6), the dataset collected and the proposed model were validated on388

harvested samples in the current study. Future work will focus on collecting a dataset of on-tree samples to389

assess the system’s effectiveness in detecting subtle firmness changes during on-tree ripening.390

At this stage, firmness estimation is based solely on palpation data. Future iterations will explore multi-391

modal sensing by incorporating additional cues, such as applied force or smell, to improve ripeness predic-392

tion. Further enhancements in portability and efficiency are also planned through the integration of custom393

tactile sensors and dedicated PCB miniaturization.394

8. Conclusion395

Ripeness is a key determinant of fruit quality, influencing flavor, marketability, and waste reduction.396

However, assessing ripeness in fruits without clear visual cues is challenging, often necessitating destructive397

firmness measurements. The standard method, a penetrometer, involves plucking sample fruits, transporting398

them to a lab, cutting them open, and probing them—an inefficient, time-consuming process. If the sampled399

fruits are not representative, the results may mislead harvesting decisions and contribute to unnecessary400

waste. Humans naturally assess firmness through palpation, a non-destructive yet inconsistent approach401

that often requires multiple attempts, increasing the risk of bruising and subjective variability.402

This work introduces a novel wearable system that merges human tactile interaction with vision-based403

tactile sensing and embedded deep learning. Operating on an edge computing platform, it bypasses cloud404

dependencies, ensuring reliable use in low-connectivity environments. By embedding a DIGIT sensor at the405

thumb tip, the device harnesses natural human dexterity, while the proposed model processes spatiotemporal406

features of palpation to provide rapid, accurate firmness predictions. The device comprises two modules:407

the thumb module, which houses a DIGIT sensor to capture real-time tactile images, and the wrist module,408

which contains the controller, display, and user interface. The operator holds the kiwifruit with four fingers409

and presses a button to initiate palpation. The embedded model then processes vision-based tactile sensing410

(VBTS) data to predict firmness, ensuring non-destructive evaluation in a real-world agricultural setting.411

To validate the system, a Hayward kiwifruit dataset containing 530 unique palpation-firmness pairs was412

collected. The proposed model achieved an R2 score of 0.89, demonstrating high accuracy. A real-world413

demonstration confirmed the feasibility of on-tree firmness estimation. No bruising was observed, and users414

reported the device as comfortable to wear.415

The proposed device outperforms existing commercial fruit firmness testers by combining non-destructive,416

compact, wearable, and wireless features with AI integration. These findings pave the way for more effi-417

cient, consistent, and user-friendly quality assessments in the agricultural sector, addressing key limitations418

of current fruit firmness evaluation methods. This matters at scale: WWF estimates that about 15% of food419

is lost before it leaves the farm, largely due to poor harvest timing and limited testing tools(World Wide420

Fund for Nature 2021). By providing quick, accurate firmness readings in the orchard, the device can curb421

premature picking, reduce bruising, and cut pre-harvest waste, supporting more sustainable production.422
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Furthermore, cost remains the chief barrier to adoption, so recent reviews advocate interim, low-cost423

technologies to keep expenses manageable (Oliveira, Moreira, and Silva 2021; Duckett et al. 2018). In line424

with this need, the fruit firmness tester market was valued at USD 72.3 million in 2023 and is projected to425

reach USD 110.2 million by 2032 (More 2024), indicating growing demand for affordable, non-destructive426

solutions and underscoring the market potential of our device.427
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